

Pacширение возможностей LEGO Education EV3 в части разработки мультиплексора для датчиков контакта

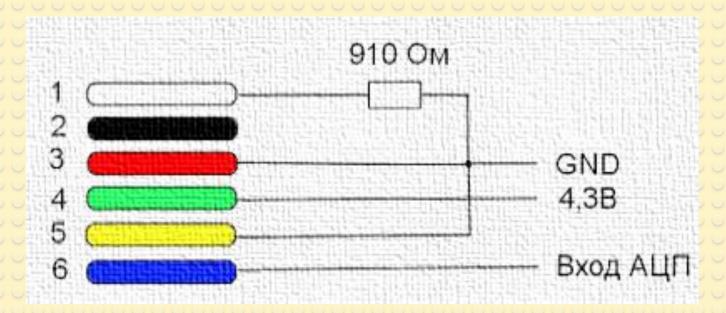
**Автор:** Шумилов Артём Максимович 11 класс МБОУ СОШ "Школа будущего"

**Научный руководитель:** Шумилова Елена Витальевна





При разработке робота на контролере № № № № № № На необходимо использовать много датчиков контакта, но возможности контролера ограничены и к одному порту EV3 можно подключить только 1 датчик контакта, либо использовать существующий мультиплексор на 4 датчика стоимостью 2700 руб. Также наличие самих датчиков контакта ограничено и их габаритные размеры не позволяют разместить достаточное их количество на роботе.

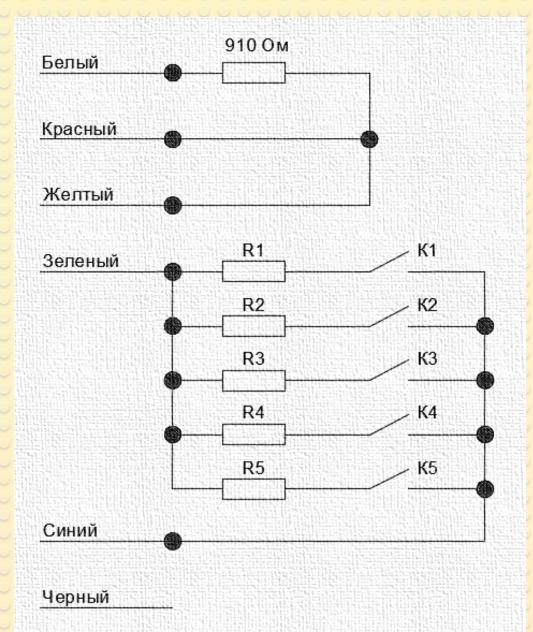

**Цель работы:** разработать мультиплексор с формально неограниченным количеством подключенных датчиков контакта и с возможностью установки микропереключателей любого типа.

#### Задачи:

- 1. Разработать простую и не требующую дорогостоящих деталей конструкцию мультиплексора.
- 2. Созданный мультиплексор должен обладать возможностью подключении более 20 датчиков контакта.
- 3. Осуществить совместимость мультиплексора не только со стандартными датчиками контакта, но и с любого типа кнопками.

## Устройство стандартного датчика контактов EV3:






Каждый из 4-х портов для датчиков может работать с 3-мя типами протоколов: аналоговый, цифровой I2C, цифровой UART.

Для датчика контакта используется аналоговый протокол. Следовательно входное значение датчика будет преобразовано при помощи аналогового-цифрового преобразователя (АЦП) EV3 в цифровое значение.

Режим работы порта для работы с аналоговым сигналом

## Схема подключения переключателей



Где:

R1 = 3.62 kOm

R2 = 2.36 kOm

R3 = 1.98 kOm

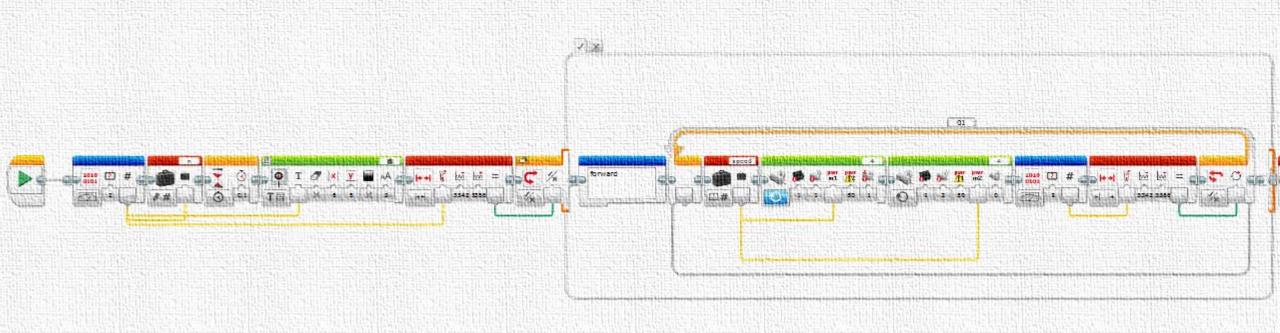
R4 = 1.47 kOm

R5 = 0.98

К1 - кнопка «Y»

К2 - кнопка «вперед»

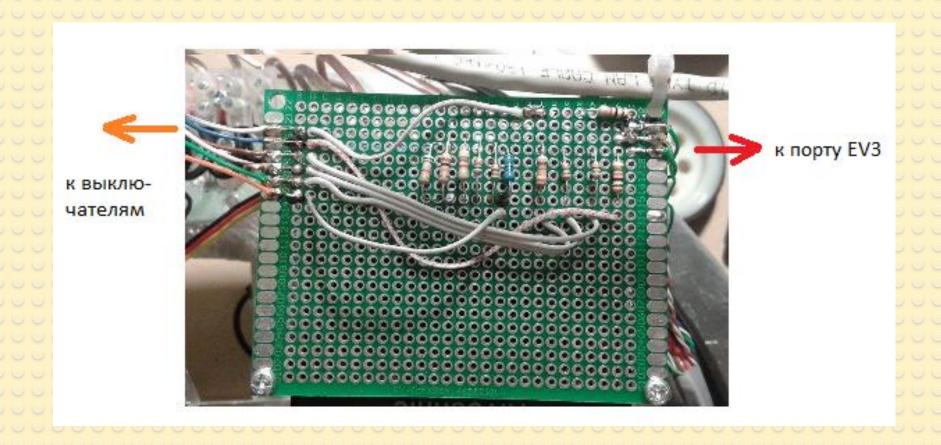
К3 - кнопка «вправо»


К4 - кнопка «влево»

К5 - кнопка «назад»

#### Программная реализация

Используется команда «Необработанное значение датчика». АЦП контролера преобразовывает значение тока через сопротивления R1-R5 в цифровое значение.


Так как при изменении температуры резистора его сопротивление изменяется, в программе применена команда «Интервал».



Постоянное напряжение на зеленом проводе 4.3 В.

Ток через сопротивления R1-R5 по закону Ома для участка цепи: I = U/R

## Практическая реализация



Выключателями служит кнопочный пульт управления роботом.

|                 |    | Сопротивлен<br>ие | Значение<br>тока | Показания<br>АЦП* |
|-----------------|----|-------------------|------------------|-------------------|
| Кнопка «Y»      | R1 | 3.62 кОм          | 1.187 mA         | 3310              |
| кнопка «вперед» | R2 | 2.36 кОм          | 1.822 mA         | 3360              |
| кнопка «вправо» | R3 | 1.98 кОм          | 2.171 mA         | 3376              |
| кнопка «влево»  | R4 | 1.47 кОм          | 2.925 mA         | 3404              |
| кнопка «назад»  | R5 | 0.98              | 4.387 mA         | 3456              |

<sup>\* -</sup> показания АЦП сняты при температуре окружающей среды +25°C. Точная температура резисторов не измерялась. Тактильное превышение температуры не зафиксировано.

## Выводы

- 1. Разработанная конструкция мультиплексора проста и не требует дорогостоящих деталей
- 2. На практике проверено, что минимальная разбежка сопротивлений не должна быть меньше 500 Ом, чтобы избежать перекрытия диапазонов значений АЦП. Следовательно теоретически возможное количество датчиков контакта подключенных к мультиплексору из расчета максимального сопротивления 100 кОм составляет 200 штук.
- 3. Для данного мультиплексора не требуются датчики контакта как таковые, нужны любого типа выключатели/переключатели.

# Благодарю за внимание!